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This paper describes the flow of a homogeneous fluid contained in a rapidly rotating 
cylinder. The upper part of the cylinder rotates slightly faster, giving rise to a 
discontinuity in the sidewall velocity. The Stewartson-layer structure arising at  the 
sidewall is essentially affected by this discontinuity. In contrast with previously 
studied problems, the Eb layer ( E  is the Ekman number) is unable to perform the 
matching of the interior flow to the sidewall. It is shown that this matching is carried 
out partially by the & layer and partially by the layer, the latter accounting for 
the jump discontinuity. This paper also presents an analytical description of the flow 
in the singularity region near the sidewall discontinuity. 

1. Introduction 
In recent years the flow of an incompressible fluid in a rapidly rotating container 

has been studied in a variety of configurations. An important feature in many flow 
configurations is the shear-layer structure arising at lateral flow boundaries. Shear 
layers of this type were first discussed by Stewartson (1957), who showed that they 
have a sandwich structure consisting of layers of thicknesses @ and @, where E is 
the Ekman number of the flow. Stewartson layers may be free, as in Stewartson’s 
original problem and in the configurations studied by Moore & Saffman (1969), or 
attached to a solid wall (see e.g. Johnson 1974). 

In all studies (involving attached as well as detached Stewartson layers) published 
thus far the matching of 0(1) velocities was entirely accomplished by the ,@ layer, 
while the B layer only played a role in performing higher-order matching and 
providing vertical transport O(l&). However, in the present paper we will investigate 
a flow configuration in which the a layer is no longer able to accomplish the O(1) 
matching completely. 

The configuration is sketched in figure 1 .  Fluid is confined in a right circular 
cylinder of height HL and radius aL ,  which rotates about its (vertical) axis with 
constant angular velocity Q, = Q(1 - c ) .  The top disk and the upper section of the 
sidewall rotate slightly faster with angular speed 52, = Q( 1 + e ) ,  0 < e < 1, resulting 
in a jump discontinuity in the circumferential sidewall velocity. Throughout this 
study the fluid motion is related to a cylindrical coordinate system ( r ,  0 ,  z )  rotating 
at  angular velocity 52, with z pointing in the axial direction; the corresponding 
velocity components are denoted by (u, w, w). For mathematical convenience lengths 
and velocities are non-dimensionalized by L and 6 QL respectively. 

The flow a t  some distance from the solid boundaries is in geostrophic balance and 
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52, = a ( 1 + E )  t 
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FIQURE 1. The geometry of the problem. 

is entirely governed by the Ekman layers a t  the horizontal boundaries; a brief 
description of these flow regions will be given in $2. At the sidewall a Stewartson layer 
arises in order to bring the azimuthal interior velocity to relative rest. It is clear that 
the quasi-geostrophic l$ layer is unable to account for this matching, which is in 
remarkable contrast with cases studied so far. As will be pointed out in $3, the 
non-geostrophic @ layer has to  account for the jump in the wall velocity instead. 
It turns out, however, that the @ layer cannot accomplish a complete 0(1) matching 
either, but the combination of both layers leads to a correct matching. 

Finally, the flow in the singularity associated with the gap in the sidewall is 
analysed in $4. 

It should be mentioned that the flow in this configuration has also been considered 
by Hocking (1962) for the special case of an infinitely long cylinder (i.e. ignoring end 
effects). However, Hocking did not analyse the Stewartson-layer structure, which is 
the main objective of the present paper. 

2. Formulation 

with angular velocity C? is described by 
The steady motion of an incompressible fluid relative to a reference system rotating 

2kx v = -Vp+EV2v ,  (2 . la)  

v .0  = 0. (2.1 b)  

Here v ,  p and k are the velocity vector, the reduced pressure and a unit vector in 
the axial direction (k  = Q/Q) respectively, while E is the Ekman number, defined 
as E = v/QL2 ( w  being the kinematic viscosity). It is assumed that the relative flow 
is small enough that inertial effects may be neglected (i.e. the Rossby number €4 Ei). 
Besides, we restrict ourselves to high rotation rates, i.e. E < 1 .  
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In  this paper we shall seek a solution u of (2.1) that satisfies the following boundary 
conditions : 

I u = (0, - r , O )  ( z  = 0, 0 < r < a) ,  

I u = (0, -a,O) 

u = (O,a,O) 

(0 < z < h, 

(h  < z < H ,  

r = a) ,  

r = a ) ,  

U =  ( o , ~ , o )  (2 = H ,  o < r < a).  1 
At some distance from the solid boundaries the flow is in geostrophic balance, and 

is completely governed by the Ekman layers at the horizontal boundaries z = 0 and 
z = H .  These Ekman layers provide the usual compatibility conditions, which enable 
one to derive the geostrophic velocity components: 

UI = 0, V I  = 0, W I  = B (2.3) 

(the subscript I refers to the interior). According to these expressions, there is no 
interior motion relative to the rotating frame, except for a weak axial flow O ( @ )  
directed towards the faster-rotating disk. 

The Ekman layers carry radial O ( B )  transport Qrad, which can easily be calculated 
by integrating the radial velocity components over the layer thickness, yielding 

Qrad(z = 0) = -gr@, Qrad(z = H )  = + $ r B .  (2.4) 

The Stewartson layer a t  the sidewall ( r  = a )  has a dual task in satisfying the no-slip 
condition at the wall and producing a downward O(B) transport from upper to lower 
Ekman layer. 

3. The shear-layer structure 
As usual, the Stewartson layer at the sidewall ( r  = a )  consists of sublayers of 

thicknesses ,@ and B. Because of its quasi-geostrophic character (i.e. the azimuthal 
velocity is independent of z ) ,  the ,@ layer is unable to perform the matching of the 
azimuthal interior velocity vI(r  = a )  = 0 to the discontinuous wall velocity V :  

I V = -a (0 < z < h),  

= + a  ( h < z < H ) .  

This O( 1)  matching must then necessarily be carried out by the I.$ layer. In  addition, 
the Stewartson layer must carry a vertical transport O ( @ )  from upper to lower 
Ekman layer; as will be shown hereinafter, both the El layer and the Ei layer 
participate in this. 

3.1. The ,@layer: n = Ojleld 

The velocity components and the pressure in the ,@ layer are expanded as 
00 

(u, v, w , p )  = z J w ( E S . i i ( n ) ,  P), Z P ) ,  I . $ j P ) ) ,  
n-o 

and substitution into (2.1) yields for n = 0 , 1 , 2 , 3 ,  
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with 7 = ( r -a)  E-4. Elimination of ri;(n) and 3(n) results in 
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Matching the azimuthal interior velocity to the sidewall requires 5 = O( l ) ,  and hence 
n = 0. Then the boundary conditions for the n = 0 problem can be formulated as 

( 3 . 4 ~ )  

(3.4b) 

(3.4c) 

The n = 0 field essentially produces vertical transport O ( @ )  which cannot be 
balanced by any other layer contribution. This would necessitate an additional 
condition for the i 8 O )  solution requiring the total vertical O ( @ )  transport to be zero. 
However, it  can be shown by integrating the continuity equation (3.2d) with respect 
to 7 that this zero-transport requirement is already implied by the boundary 
conditions (3.4). 

The general solutions of (3.2), (3.3), satisfying the Ekman suction conditions (3.4c), 
are 

} (3.5) 

with y n  = (2nn/H) i ,  w = -1 2+iid3. By applying the no-slip conditions (3.4b), the 
coefficients a,, b,, c ,  can be determined: no-slip of 3i0) and G(O) requires 

an+b,+cn = 0, an-u2bn-wcn = 0, (3.6) 

while 5(O)(7 = 0) should satisfy 
nxz m 

g0)(7 = 0) = - I: (an-bn-c,)cos-- = f ( z ) ,  ( 3 . 7 ~ )  
n-1 H 

with 
f ( z )  = -a (0 < z < h) ,  

=+a ( h < z < H ) .  
(3.7b) 

In order to evaluate the  summation it is necessary to find a Fourier cosine-series 
representation for the function f ( z ) .  Since a cosine series corresponds to an even 
function,f(z) must be extended on the interval - H < z < 0, so thatf(  -2) = f ( z ) .  By 
elementary Fourier analysis one obtains 

Apart from the cosine series, this Fourier expansion of f ( z )  contains a constant 
a ( l - 2 h l H ) .  Hence, in view of (3.7) and (3.8), we must conclude that 8 O )  cannot 
satisfy a no-slip condition of the form (3.7). Nevertheless, the obvious choice 

4a . nxh 
an-bn-cn = -sin-- 

nn H (3.9) 



The shear-layer structure in a rotating &id 

leads to 

5 

(3.10) I V"(O)(y = 0 )  = -a-a ( 1 -- ;) (0 < z < h) ,  

= +a- a (1 -:) (h < z < H ) .  

Although it accounts for the jump 2a in the azimuthal velocity, the n = 0 field of 
the ,@ layer is unable to satisfy the no-slip condition (3.4b) completely (except in the 
special case h = i H ) .  As mentioned before, a Stewartson layer is quasi-geostrophic, 
and therefore not able to account for the jump in the swirl velocity. However, it can 
provide a matching to a constant 'wall velocity' Vo, so that (3.10) can be reformulated 
as 

with 
i V " ' O ) ( q  = 0 )  + v, = -a (0 < 2 < h) ,  

= + a  ( h < z < H ) ,  

v, = a (1 - f). 

( 3 . 1 1 ~ )  

(3.11 b )  

The coefficients a,: b,, c ,  are then found from (3.6) and (3.9), yielding 

2a 1 . nxh nxz 
zZ(O)(q,z) = - X -sin-sin--[ernlr--~(yn;y)+g2/3 # z ( y n ; q ) ] ,  

a-1 n H H 

n: n - l n  H H 
2a O0 1 nnh nxz 

V"(O)(q,z) = -- X - s i n - c o s - [ e ~ ~ ~ + ~ , ( y n ; y ) - ~ 1 / ~ q 5 , ( y n ; q ) ] ,  

with 

(3.13) 

It is worth pointing out that  the constant 'wall velocity' Vo can also be derived 
in an alternative way, viz by integrating (3.1 1 a )  from z = 0 to z = H .  Since G(O)(v = 0) 
is represented by a cosine series of the form (3.7a), the integral over V " ( O ) ( q  = 0) 
vanishes, and hence H K  = -ah+a(H-h) ,  
or 

This is a general derivation of V,, in which no detailed information about the iY0) 
solution structure is required. 

It is obvious that the n = 1 field is absent in this particular shear-layer problem. 
The n = 2 and n = 3 fields, however, play an important role in producing vertical 
O ( @ )  transport and satisfying higher-order matching conditions, and will be discussed 
later. 
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3.2.  The ,@ layer 

The velocity components and the pressure in the @ layer are expanded as 

00 

( u , v , w , p )  = C B n ( @ U ,  V , E i W , B P ) ,  

and by substitution into (2 .1 )  one may derive the following set of relevant equations: 

n-o 

(3 .14)  

2 5  
W ( Z  = H )  = -'V 

I u, = v, = w,, = 0 ,  

v5g + 2 w, = 0 ,  

u = W& 
in which 6 = ( r - a ) E - i  is the stretched radial coordinate. The Ekman suction 
conditions 

W ( Z  = 0 )  = +gVE, 

enable one to derive from (3 .14)  

The V and W solutions can be determined easily, and, by requiring 
V(f;  = 0) = a ( l - Z h / H )  and V(&- co) = 0,  one obtains 

while the solution for the radial velocity is found from ( 3 . 1 4 ~ ) :  

(3.15 a )  

(3.15b)  

( 3 . 1 5 ~ )  

These expressions show clearly that the layer is completely absent if h = 6H; in 
this special case the I$ layer is able to perform the 0(1) matching to the sidewall. 
On the other hand, if the gap lies in the bottom ( h  = 0) or top corner (h = H ) ,  the 
matching is entirely accomplished by the B layer, the I8 layer (n = 0 field) then being 
absent . 

The local (i.e. per unit length of circumference) vertical O(E5) transport T(z)  in 
the J!$ layer can be calculated by integrating W over the layer thickness: 

(3 .16)  

By considering the total mass flow O(&) across a horizontal plane at arbitrary height 
z (including contributions from the interior, the layer and the I$ layer), one derives 
the following condition for the vertical O ( @ )  transport p(z) in the ,I$ layer: 

(3 .17 )  

In the l$ layer vertical transport O ( @ )  is carried by the n = 2 field, which will be 
analysed next. 
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3.3. The Ei layer: n = 2 field 
In  providing a vertical O(E4) transport as given by (3.17) and matching U ( [ )  to the 
sidewall, the n = 2 field of the Ei layer plays a dual role. The boundary conditions 
for this problem are 

C ( 2 ) , f i u " ( 2 ) , 2 P ) + O  (v-t-m), 

I n  the Ekman suction conditions (3.18b) &functions are included in order to be able 
to describe possible singular Aow associated with the O(B x ,@) corner regions a t  z = 0 
and z = H. By substitution of the G(O) solution (3.12b), the suction conditions become 

and integration with respect to  yields 

x ;sin- +C, = --a 

ah (3.20) 
sin - + C T  = --+CT. H - 

2a , 1 nnh 0 
@ ( z ) ( ~  = 0) dy = -- J-, X n=1 

2a 
G(')(z = H)dg = +- J-, X n-1 n 

H 
0 O0 ( -1 )n  nxh 

H 

The general transport condition (3.18 c) requires 

CB = CT = 0, 

which implies that there are no corner singularities in the general case 0 < h < H .  
I n  the special cases h = 0 and h = H ,  however, the situation is remarkably different : 
the n = 0 field of the l& layer then being absent, the suction conditions (3.18b) are 

(3.21) G(')(Z = 0) = cB8(r), ' 6 ( 2 ) ( Z  = H )  = c~6(r), 

with CB and CT being determined from (3.18 c )  : 

CB =-2a, CT=O ( h = O ) ,  

C,=O, c,=-2a ( h = H ) .  
(3.22) 
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Solutions of (3.3) satisfying the conditions (3.18a), (3.21) and (3.22) can be obtained 
by standard techniques, yielding 

with 

(3.23) 1 
However, in the general case 0 < h < H, one has to  seek solutions that satisfy the 
suction conditions (3.19) with C, = CT = 0. A similar problem has been studied by 
Hunter (1967), and his approach will be followed here. 

By introduction of the stream function $(r,  z ) ,  

(3.3) can be rearranged to  
a6$ az$ 
-+4- = 0 
are  az2 . 

In  view of the transport condition ( 3 . 1 8 ~ )  we take $ = Pl + Pz, with 

p2(o,2) = +$)(;-;). 
The conditions (3.19) at z = 0 and z = H require 

with 

, 

, 

(3.25) 

(3.26) 

(3.27) 

F(T)  = eYG7 + $l(Yn ; 'I) -$ d3 $2(Yn ; T ) .  

It can easily be verified that A(0) = @ and B(0) = &( 1 - 2h/H). I n  summary, the 
boundary conditions for the pl, Pz problems are 

(3.28 a )  

(3.28 b )  

(3 .294  
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The general g1 solution satisfying the conditions a t  z = 0 and z = H is 

and substitution into (3.25) yields an equation forfn(7): 

(3.293) 

(3.30) 

(3.31) 

By integrating fiz = -+$,,,, with respect to z ,  the fi@) solution is found : 

The conditions (3.283) require 

and the solution of (3.31) that satisfies these boundary conditions and tends to zero 
as 7-f- co can be obtained as pointed out by Hunter (1967): 

2(2n+ 1 )  n 
H a: = Y X + l  = 

(3.32) 

Here 55' (a ,  v) is the solution of the sixth-order non-homogeneous equation 

that vanishes as T,+- 00 and satisfies y = ys = yqq,, = 0 at q = 0; this solution 
9 ( a , ~ )  is similar to that given by Hunter (1967, equation (36)). 

By analogy, the general pz solution is 

(3.33) 

and gn(7) can be determined as above. yielding 

4nn p; = yin = H '  
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This completes the analysis of the n = 2 field of the @ layer: the functions fn(7)  
and g n ( 7 )  and consequently the stream functions t+Fl and t+F, are now determined. The 
total stream function is t+F = t+Fl + t+F2, from which the velocity components can be 
derived by use of the definition (3.24). 

3.4. The @ layer: n = 3 Jield 
The n = 3 field of @ layer plays a role in matching W(6 = 0) to the sidewall; the 
appropriate boundary conditions are 

C(3), v"(3), ~$3)  -to (7 +- 0 0 )  ; 

(3.35) 

221(3) = 0 ( Z  = 0 ,  H) .  1 
Again, the general solutions are represented by (3.5), the coefficients to be determined 
by applying the conditions at 7 = 0; this results in 

with 

B, = a - - [ l + ( - l ) n ] ( l - ~ ) ( g ) ,  2h 2 4 
2nn 

and with +2 given by (3.13). 

4. The singularity structure 
The wall velocity changes discontinuously across the gap at ( r  = a, z = h) ,  and since 

the vertical scale of this gap is assumed to be small, i.e. 4 O(l ) ,  the flow near it will 
not be governed by the l$ layer equations (3.2). Instead, one should apply the more 
complete equations 

(4.1 a ,  b )  

By assuming 

aP -2v = --++%, 2u = m 2 v .  a7 
a a  
- - - O ( B ) ,  6 4  6= O(1) 
ar 'az  (4.2) 

one finds 2C < EV% = O ( l ) ,  or equivalently 

where p = (7-a) E-4 and [ = (z-h) E-i are the stretched radial and vertical co- 
ordinates respectively (see figure 2 ) .  From ( 4 . 1 ~ )  one derives p = o(@), and hence 

showing that the radial Coriolis force is balanced by the radial pressure gradient only. 
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B(p = 0) = +(I 

' P  

q p  = 0) = 4 

FIQURE 2. The geometry of the singularity a t  the gap. 

The solution of (4.3) must satisfy the following boundary conditions : 

(4.4) i 
u+o (p+-co), 

d = - a  (P = 0, 5 <  01, 

u=+a ( p = O ,  C > O ) .  

A similar problem with a jump in the boundary conditions has been studied by 
Steketee (1966), who showed that solutions of the form 

are able to account for a jump discontinuity. I n  the present problem only the latter 
solution is relevant, and applying the conditions a t  p = 0 yields 

Because G(p+- co) = 0 and 6(c++ co) = +a, this solution presents a correct 
description of the flow in the vicinity of the gap in the sidewall. 

The author is much indebted to Professor L. van Wijngaarden for his useful 
suggestions concerning the singularity structure and also to a referee for his valuable 
criticism. 
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